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The Capacity of Avalanche Photodiode-Detected
Pulse-Position Modulation

J. Hamkins!

The capacity is determined for an optical channel employing pulse-position mod-
ulation (PPM) and an avalanche photodiode (APD) detector. This channel is dif-
ferent from the usual optical channel in that the detector output is characterized
by a Webb-plus-Gaussian distribution, not a Poisson distribution. The capacity is
expressed as a function of the PPM order, slot width, laser dead time, average num-
ber of incident signal and background photons received, and APD parameters. The
capacity also is examined for the ideal photon-counting (Poisson) channel. Based on
a system using a laser and detector proposed for X2000 second delivery, numerical
results provide upper bounds on the data rate, level of background noise, and code
rate that the channel can support while operating at a given bit-error rate. For
the particular case studied, the capacity-maximizing PPM order is near 2048 for
nighttime reception and 16 for daytime reception. Reed—Solomon codes can handle
background levels 2.3 to 7.6 dB below the ultimate level that can be handled by
codes operating at the Shannon limit.

[. Introduction

The capacity of a channel is the highest data rate it can reliably support. Whenever the data rate is
less than the capacity of the channel, there exists an error-correcting code for the channel that has an
output probability of error as small as desired, and, conversely, whenever the data rate is more than the
capacity, the probability of error is bounded away from zero.

The capacity of the optical channel depends on many factors, including the modulation scheme, laser,
transmission medium, photodetector, and preamplifier. Unlike the band-limited additive white Gaussian
noise (AWGN) channel in which all performance-influencing factors are relevant to the channel capacity
only in how they affect the bandwidth and signal-to-noise ratio, there is not a method to simplify the
formulation of the capacity of the optical channel to so few variables. For example, the capacity depends
separately on the signal and background light levels, not simply on their ratio. In this article, the
functional dependence of the capacity is distilled to the following six major parameters: (1) the pulse-
position modulation (PPM) order, M, (2) the laser pulse width, T, (3) the necessary dead time between
pulses, Ty, (4) the average number of signal photons per pulse incident on the detector, 7is, (5) the average
number of background photons per slot incident on the detector, 7, and (6) the detector itself. These
parameters are represented by the vector (M, ng, 7y, Ts, Ty, detector), and we will write the capacity as
C =C(M,ns, iy, Ts, Ty, detector). For an avalanche photodiode (APD) detector, the parameters used are
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the quantum efficiency, 7; ionization ratio, k.sr; noise temperature, T'; load resistance, R; noise equivalent
one-sided bandwidth, B; bulk leakage current, I;; and surface leakage current, Is. Not explicitly included
in the functional description of the capacity is the modulation extinction ratio, a.,, of the laser, which
we fix at 10° throughout the article. A description of these parameters is contained in [7,18].

Numerical results in the article are based on a system using components currently available and
suggested by X2000 second delivery for a Mars-type mission. This includes a 1064-nm pulsed Q-switched
neodymium-doped yttrium aluminum garnet (Nd:YAG) laser; a super low K (SLiK) APD detector made
by EG&G, where K is the ionization ratio; and a transimpedance preamplifier.

Future improvements made in lasers and detectors can be evaluated with the methods outlined
in this article. The increase in capacity can be projected by re-evaluating the equations with new
(M, ng, 7y, Ts, Ty, detector) parameters.

In the following section, the optical channel is described and the notation used in this article is given.
We also discuss the various units in which capacity may be expressed. Section III gives the analytic
capacity results, including derivations of the capacity of PPM, the probability of uncoded symbol error
for the APD and ideal photon-counting detectors, and implications of the converse of Shannon’s capacity
theorem. In Section IV, we give the numerical capacity results, and, in Section V, we state conclusions
and discuss future research needed in this area.

Il. Preliminaries
A. Channel Description and Notation

1. Encoder, Laser Modulator, and Optical Channel. This article concerns the communications
system shown in Fig. 1. The information bits U = (Uy, - --,Uy) are independent identically distributed
(i.i.d.) binary random variables assumed to take on the values 0 and 1 with equal probability. The vector
U is encoded to X = (X1, -+, X,,), a vector of n M-PPM symbols. Each M-PPM symbol is a number in
{0,---, M — 1} (or equivalently, a block of log, M bits, if M is a power of two). There are one signaling
slot and M — 1 nonsignaling slots for each M-PPM symbol. The symbol indicates to the modulator in
which of the M time slots of length T to pulse the transmitting laser. Between each M-PPM symbol, the
laser requires dead time, T, to recharge and ready itself for sending another pulse. The laser is coupled
to a telescope, and pulses are transmitted through the optical channel to the receiving telescope, where
background light also enters the receiving telescope.
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Fig. 1. An optical communications system.



2. Detector. At the receiver, light is focused on a photodetector, which we restrict to either an APD
or an ideal photon counter. The detector integrates over slot times to produce Y = (Y1,---,Y,), where
Y; = (Y1, -, ¥i,m) are the M soft outputs for the ith M-PPM symbol, 1 < ¢ < n. The number of
photons incident on a detector from an incident optical field of known intensity is a Poisson distributed
random variable [7]. The number of photons absorbed by the detector is equal to the number of photons
incident times the quantum efficiency, 7, of the detector. The secondary electrons at the output of the
detector may have a more complicated probability distribution [4,17,26]. In this article, for simplicity,
we assume perfect timing synchronization and no interslot interference, which implies that the number
of absorbed photons in each slot is independent of the number of photons absorbed in all other slots.
Recent work has developed a method to combat interslot interference by using trellis-coded modulation
[12,21].

3. PPM Demodulator and Decoder. Typically, the individual slot statistics at the output of
the detector are not available to the decoder.? Instead, for 1 < i < n, a PPM demodulator uses the
M slot statistics of Y; to make an M-PPM symbol decision, Z; € {0,---, M — 1}, by choosing the slot
within each symbol that maximizes the number of detected photons, or, in case of a tie, by randomly
choosing a slot among those with the maximum statistic. It has recently been proven that this is the
maximum-likelihood rule for PPM detection when the statistics are governed by the sum of Webb and
Gaussian deviates [25]. Perhaps surprisingly, the maximum-likelihood rule becomes more complicated
than “pick the largest” when the detector output is approximated by a Gaussian distribution, in which
a nonsignaling slot has mean u; and variance ag and a signaling slot has mean u, + us and variance
o? + 02, We avoid this problem by not using the Gaussian approximations.

B. The Units of Capacity

This article expresses the channel capacity in bits per second because ultimately the system designer
wants to know how quickly data can be pumped through the channel using the given power available.
The laser properties, optics efficiency, pointing accuracy, and space and atmospheric losses all affect C,
but only through their influence on 7,, 1y, Ts, and T,;. Hence, we express the capacity as a function of
the following parameters:

C =C(M,ns, iy, Ts, Ty, detector)

The units in which C' is expressed affect the parameter values that maximize C. This fact, which might
seem surprising at first, implies that work on maximizing photon efficiency (e.g., [2,13,16]>*) does not
necessarily help determine the maximum data rate possible on the channel.

1. Bits Per Photon or Bits Per Channel Use. A channel capacity of C bits per channel use
can be restated as C'/7i5 bits per signal photon, C'/M bits per PPM slot (neglecting the dead time), and
C/(MTs+T,) bits per second. The capacity in bits per photon or bits per channel use is not bounded for
noiseless PPM if perfect timing is assumed [19]. (Other practical constraints bound it [13,16].) Intuitively,
the reason is that, by choosing increasing values of M and keeping the slot duration fixed, the statistics
governing the number of photons detected in the signal slot remain the same, but the number of bits per
symbol increases as log, M. Thus, the capacity in bits per photon (or bits per channel use) increases as
logy M, an unbounded number as M increases.

21f individual slot statistics are available to the decoder, then the capacity will be higher. See Appendix A for a discussion
of this case.

3 J. Hamkins, “Lower Bounds on the Number of Required Photons for Reliable Optical Communication With PPM Sig-
nals,” JPL Interoffice Memorandum 331.98.9.005 (internal document), Jet Propulsion Laboratory, Pasadena, California,
November 1998.

4J. Hamkins, “More Numerical Capacity Results for the Photon Counting Channel,” JPL Interoffice Memorandum
331.99.1.001 (internal document), Jet Propulsion Laboratory, Pasadena, California, January 1999.



This unbounded capacity in bits/photon is not particularly useful, however, because it necessitates
a low data rate and wasted power. Lasers on a spacecraft can have power allocated to them on a
continual basis, at least within the intervals of time set aside for transmission to Earth. This power is
used primarily to charge the laser after it has fired a pulse. If the laser waits an extensive period of
time between pulse firings, that power is being wasted. From an information theoretical standpoint, the
waste can be quantified by the lost entropy of the signal. The information content of a set of signaling
slots (ones) and nonsignaling slots (zeroes) decreases as their probabilities are made more disparate. An
increasing M means that the information content per slot (or per unit time) is decreasing, because M — 1
out of every M slots contain zeroes.

2. Bits Per Second. Instead of using an enormous value of M and transmitting one symbol,
we would be better off transmitting two (M/2)-PPM symbols in the same amount of time (assuming
M >> T,;/Ts), because there is a potential for 2log, (M /2) bits received, as opposed to only log, M bits.
Neglecting dead time, the capacity of the errorless channel is log, M /M bits per slot, which is maximized
when M = 3. (The noninteger maximum occurs when M = e.)

The optimum value of M may be much higher than three when the required dead time is taken into
account. On an error-free channel using M-PPM, a slot time of Ty, and a laser dead time of Ty, the
capacity in bits per second is

C— logy M

= m bitS/SeCOnd

M may be chosen to maximize this equation. For the laser used in this article, Ty = 3.125 x 10~8 seconds
and T; = 4.32 x 10~% seconds, and an errorless channel capacity is optimized when M = 2082. For
channels that produce errors, more complicated expressions of capacity result [shown later in Egs. (1),
(7), (11), and (A-1)] and a different optimal value of M emerges.

lll. Analytic Results

In Section III.A, we derive the capacity of APD-detected PPM, in terms of the PPM order M and
the probability of correct uncoded M-PPM symbol detection. A detailed summary of how to compute
this probability then is given. In Section III.B, we discuss the capacity of the photon-counting channel
for PPM signaling, as well as for the more general case of average and peak power-constrained signaling.
In Section III.C, we use the converse to Shannon’s capacity theorem to derive bounds on performance.

A. Capacity of APD-Detected PPM

1. Capacity as a Function of Correct PPM Symbol Detection. The capacity of the commu-
nications system in Fig. 1 is the maximum mutual information between the input and output,

C = max I(U; U) = max H(U) — H(U|U)
p(X) p(X)

where H(U) is the entropy of U, H(U|U) is the conditional entropy of U given U, and I(U;U) is
the mutual information between U and U. Since the encoder and decoder are deterministic, invertible
functions, the capacity of the system reduces in the usual way to

C =maxI(X;Z) = max H(Z) — H(Z|X)
p(X) p(X)



The channel X — Z is an M-ary symmetric channel (repeated n times), whose capacity depends on the
probability of correct uncoded symbol detection, p = Pr(X; = Z;). Under the assumptions of perfect
timing and negligible interslot interference, the M — 1 possible incorrect decisions are equally likely, and
each incorrect M-PPM symbol has probability ¢ = (1—p)/(M —1). The capacity of the M-ary symmetric
channel is given by [1]

C =logy, M + plogyp + (M — 1)qlog, ¢ bits per channel use (1)

Thus, to compute the capacity of the optical channel, we need only determine p. Note that the analysis
thus far has not depended on the particular type of detector used, only on the detector operating in a
memoryless fashion.

2. The Probability of Correct Detection With an APD Detector. A low-noise APD en-
hances the detection of weak optical signals by amplifying the electrical current generated by absorbed
photons. This is illustrated in Fig. 2, in which the diode symbol represents the more complicated solid-
state components of the APD itself, and some of the APD parameters are shown in block diagram form.
Unfortunately, in addition to amplifying the signal, the APD transforms the simple Poisson distribution
of absorbed photons into a much more complicated probability density function (pdf) at the APD out-
put. This pdf is known [4,17] but extremely complex to evaluate numerically. This Conradi-McIntyre
distribution has been accurately approximated in a simpler formulation by Webb [26]. In particular, the
probability that m secondary electrons are emitted from the APD in response to the absorption of, on
average, 1 primary photons in a slot is approximately

(m — Gn)?

20G2F (14 - prn )

— 3/2
——5 m—Gn
V2rnG2F {1—&- 41‘1GF/(F7 1)}

exp

Pr,, (m|7) =

where G is the average APD gain, F is the excess noise factor given by

1
F= keffG + (2 — a) (1 — k’eff)

and kess is the ionization ratio. For values of m close to its mean, G, Eq. (2) can be approximated by
a Gaussian pdf; however, Pr,(m|n) departs greatly from a Gaussian pdf at both tails, which form the
main contribution to error events in decoders [7].
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Fig. 2. The soft APD demodulator.



The detector output, x, is the sum of the charge due to the approximately Webb-distributed secondary
electron emissions, a contribution from the APD surface leakage current, and Gaussian-distributed ampli-
fier thermal noise, as shown in Fig. 2. Because of the thermal noise, the slot statistic  is not necessarily
an integer, and may even be negative. The pdf of the sum charge is given by the convolution

o0
paln) =Y é(x, pim, %) Pry(m[n) (3)
m=0
where @(x, ftm,0?) is a Gaussian pdf with mean p,, = me_ + I, Ty and variance o = (2e_I, +

(4xT/R))BT?, e_ is the electron charge, k is Boltzmann’s constant, T is the noise temperature, B
is the single-sided noise bandwidth, and I is the APD surface leakage current. Note that Pr,,(m|n) and
p(z|n) are conditioned on the mean number of photons effectively absorbed by the detector, not incident
on the detector. The relationship between incident and absorbed photons is governed by the quantum
efficiency, 7, of the detector, as shown in Fig. 2.

The average number of absorbed photons, 71, depends on whether the slot contains the signal. In a
signaling slot, i = nis +nip+Tslp/e—; in a nonsignaling slot, i = s /e, +nitp+Tsly/e—. The Tsl,/e—
term represents the additional effective absorbed photons resulting from the APD bulk leakage current.
The nfis /- term represents the laser-emitted photons absorbed when the laser is not sending a pulse.
For practical purposes, the extinction ratio, e, is often inconsequential, being as high or higher than
108.

The probability of correct detection, p, is given by

_ M—1
o0 T @ R T
D= / D <m|nns + nny + e—b) [/ P (y|nnb + U + —b) dy} dx (4)

—o00 — — 00 Qer e_

where p(x|fi) is the conditional pdf of the detector slot statistic given that an average of i photons are
absorbed by the detector, using Eq. (3). By plugging Eq. (4) into Eq. (1), the capacity is determined.
In cases when Eq. (4) is too cumbersome to numerically evaluate, we may use a simpler expression as a
bound and approximation. Using Jensen’s inequality, p can be bounded by [22]

> I ° nn I M—1
p > [1 —/ P (xnns + nnp + e_) / P <ynnb + o ® 4 e—) dydx} (5)
—o0 - x er —

which will give a lower bound on capacity when plugged into Eq. (1). This bound always is tighter than
the union bound [10], which implies that, as the probability of error gets small, the ratio of the bound to
the true value tends to one.

B. Capacity of the Photon-Counting Channel

Both the incident and the absorbed photons of a photon counter have a Poisson distribution with
mean values that differ by a factor of the quantum efficiency, 7, of the photon counter. The photon-
counting detector has been studied extensively in previous work on the optical channel (see, e.g.,
[2,3,5,6,9,11,13-16,19,20,23,27,28]). We may view the photon counter as a type of ideal photomulti-
plier tube (PMT), although a more proper statistical development of the PMT is developed in [24]. By
using the ideal photon-counting model and the same quantum efficiency as that observed in real PMTs,
we can obtain PMT performance approximations.



1. PPM Signaling on the Noisy Photon-Counting Channel. The capacity is determined
by Eq. (1) and the probability of correct uncoded PPM detection, p, from the photon counter. Let
Pois(i,n) = n'e™"/i! denote the probability that a Poisson random variable with mean n takes on the
value i, s = 0,1, --. The probability that an uncoded M-PPM symbol is detected correctly is given by

p = Pr (uncoded PPM symbol is detected correctly)
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After some straightforward algebra, this simplifies to [3,8]
Lt S ety
P= 3¢ et AT kz_l Pois(k, nfis + nhp) mZfOPms(m,nnb) — (6)

where a = Pois(i, niip)/ Z P01s(m nip). Equation (6) may be plugged into Eq. (1) to compute the
capacity of PPM when an 1dea1 photon counter is used.

2. PPM Signaling on the Noiseless Photon-Counting Channel. When no background photons
are absorbed, 7, = 0, and the capacity simplifies to [16]

(1—e"s)logy M

C =
(.Z\fTs + Td)

bits/second (7)

This can provide an easy bound for the noisy photon-counting channel. As n, — 0, the capacity will
approach this noiseless case.

3. Average and Peak Power-Limited Signaling on the Noisy Photon-Counting Channel.
An M-ary signaling scheme more general than PPM, which results in a higher capacity, was considered



in [27]. There are M waveforms A, (t), m € {1,---, M}, where A, (¢) is the absorbed signal photons per
second as a function of time. Each waveform is subject to a peak power constraint,

0 < A\n(t) < A photons/second, for0<t<T (8)

and to an average power constraint,
1 T
T / Am(t)dt < oA photons/second (9)
0

Background light adds a rate of A9 photons/second, and the probability that k& photons are counted at
the receiver in an interval of length 7 is given by Pois(k, A) = (e AAF)/k!, k =0,1,2,---, where

A= / t+7()\(t’) + No)dt! (10)

Let the probability of correct word detection be denoted p. For a fixed A, Ay, and o, a rate R > 0
bits/photon is achievable if for each € > 0 there exists a system operating with parameters (M, T, o, p)
such that p > 1 — e and M > 2894 The channel capacity, C, is the supremum of all achievable rates.
Wyner found that the capacity of a photon-counting channel, when the signal is subject to the constraints
in Egs. (8) and (9) and the photon counter absorbs Ay background photons/second, is given by

C = Alg(1+s)logy(1+ )+ (1 —q)slogy s — (g + s)logy(g + s)] bits/second (11)

where

q = min(o,qo(s))

A+

%0(3) = s%e

C. Implications of the Converse of Shannon’s Capacity Theorem

The converse of Shannon’s channel-coding theorem applied to the communications system in Fig. 1
implies that any error-correcting code with code rate R. information bits per transmitted bit satisfies

R.(logo M)(1 — Hp(Fp)) < C(M, is, T, Ts, detector) bits per channel use (12)

where Hy(z) = —zlog, 2 — (1 — x) log,(1 — ) is the binary entropy function and Py is the coded bit-error
rate (BER). Here, R.log, M is the rate in bits per channel use. Note that capacity is expressed in bits
per channel use, which removes its dependence on Ty. We may rewrite Eq. (12) as



C(M,ns,np, Ts, detector)
R.log, M

P,>H, |1 - (13)

For a given code rate R. and fixed (M, ns, iy, T, detector), Eq. (13) gives the minimum BER, P, that
any rate-R. code can achieve on the channel. Alternatively, we may write

C(M,ns,np, Ts, detector)
(logy M)(1 — Hy(F))

(14)

For a given desired error rate, say P, = 1076, Eq. (14) gives an upper bound on the code rate, i.e., the
percentage of the transmission bits that carry information. Since the data rate Ry = (R.logo M)/(MTs+
T,), this translates directly into a bound on the data rate as well:

Ry < C(M,ns,np, Ts, detector)

T (MTs+Ta)(1 — Ho(P)) bits/second (15)

IV. Numerical Capacity Results

All numerical evaluations were carried out on a 333-MHz Pentium II using programs written in C
and Perl. We used parameters from a 1064-nm pulsed Q-switched Nd:YAG laser having slot width
T, = 31.25 ns, required dead time T; = 432,000 ns, and modulation extinction ratio ae, = 10. This
laser was chosen based on its proposed use for X2000 second delivery.> The EG&G SLiK APD and follow-
on electronics have the following parameters: kesp = 0.007, T = 300 K, R = 179,700 Q, B = 1/2T, Hz,
I, =4x107"% A, I, =2 x 1072 A, and n = 38 percent. See Appendix B for a description of these
parameters or [7] for a more detailed explanation. All numerical results reported in the article used an
optimized APD gain. We discuss this optimization in Section IV.E; the optimal gain varied from 50
to 200, depending on the background level.

A. Bit-Error Rate Versus Background Level

We used Eq. (13) to determine the lowest bit-error rate theoretically possible for PPM signaling using
the Nd:YAG laser and SLiK APD. The capacity was determined by numerically evaluating Eq. (5) and
plugging into Eq. (1); substitution into Eq. (13) gives the bound on bit-error rate. Figures 3 through 5
indicate the bounds for M = 256, M = 64, and M = 2, respectively. As can be seen, when operating at
a BER of 1075, the use of rate-7/8 codes promises the ability to withstand background levels over 40 dB
stronger than an uncoded system. Rate-7/8 Reed-Solomon (RS) codes operate within 3.5 dB of the limit
for rate-7/8 codes. In an uncoded system with M = 256, we must have 7, < 0.001 in order to achieve
a BER of 107%; with an RS(255,224) code, we required fi;, < 7.1; and capacity implies 7, < 16.0. Note
in Table 1, which provides the maximum background light that can be handled while operating with a
coded BER of 1079, that, when M = 64, an RS code is further from capacity than when M = 256.
Table 1 indicates that codes operating at the Shannon limit can withstand 2.3 to 7.6 dB higher levels
of background light, as compared with RS codes. In the table, the parameters are M = 256,64, and 2;
R.=17/8 or 1/2; iy, = 100; Ts = 31.25 ns; and a SLiK detector.

5 G. Ortiz, personal communication, Communications Systems and Research Section, Jet Propulsion Laboratory, Pasadena,
California, March 1999.
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Fig. 4. A comparison of RS performance with the Shannon limit.

B. Code Rate Versus Background Level

Using Eq. (14), a bound on the highest coding rate possible while operating at a given BER and
(M, ng, nip, Ts, detector) was calculated. This code rate is the percentage of transmission symbols that
carry information. The remainder of the transmissions carry redundancy used for coding. It also can be
viewed as the fraction of the maximum data rate, log, M/(MT, + Ty), that it is possible to achieve on
the channel. Both the maximum code rate and the code rate needed by RS coding are shown in Fig. 6.

C. Data Rate Versus Background Level

Using Eq. (15), a bound on the highest data rate possible while operating at a given BER and
(M, ng, nip, Ts, Ty, detector) was calculated. As i, — 0, the data rate tends to the maximum dictated by

10
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Fig. 5. The Shannon limit on the BER of 2-PPM.
Table 1. Maximum background light while operating
with a coded BER of 10 —6,
iy, Ty, Difference,
M Re maximum RS coding dB
256 7/8 16.0 7.1 3.5
64 7/8 29.3 5.1 7.6
2 7/8 115 — —
256 1/2 37.8 22.5 2.3
64 1/2 69.9 30.5 3.6
2 1/2 475 — —

M, Ty, and Ty: logo M/(MTs + T,). Figure 7 shows the maximum attainable data rate for various M,
a range of 7y, and with fixed ng, Ty, Ty, and detector. Also shown is the RS coding performance when
M = 256.

D. Optimization of PPM Order

Figure 7 begs the question of what PPM order optimizes the data rate. For nighttime reception
in which n, < 1, the optimal PPM order is near M = 2048. This closely follows the discussion in
Section I1.B.2 regarding the errorless channel. For daytime reception in which 7;, ~ 100, we can see from
Fig. 7 that the optimal PPM order is under 256. To be more precise, the order of PPM that maximizes
capacity in bits per second can be seen directly from a plot of capacity versus M. This is shown in
Fig. 8, and the optimal PPM orders for various values of n;, are summarized in Table 2. In Table 2, the
parameters are P, = 107%, n, = 100, i € {0.1,1,10,50,100}, Ty, = 31.25 ns, Ty = 432,000 ns, and the
SLiK APD detector.

This suggests the use of a multiple PPM order communications system. During nighttime reception,
it should use M on the order of thousands, and during daytime reception, it should use M on the order
of dozens. Unoptimized PPM orders can be costly. As can be seen from Fig. 8, using M = 2036 during
the day would be disastrous for the data rate. Using M = 18 at night reduces capacity by over half.
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Fig. 7. The capacity of M-PPM on an optical channel, with
Me {2,64,256,2048,4096}.

E. APD Gain Optimization

The APD gain is a parameter required to evaluate performance. For example, Eq. (2) depends on
the gain. All numerical results in this article use an optimized gain. For each value of 7;, the numerical
capacity or other needed quantity was computed over a range of gains and the largest one chosen. In the
interest of time, the gain was restricted to multiples of five. In all cases considered, a gain difference of
five (and typically much more than five) from the optimal value made little difference in the numerical
results. Shown in Fig. 9 are the optimal gain values. Optimal APD gains are also reported in [22].
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Table 2. Optimal PPM

orders M.
Ny Optimal M
0.1 2036
1 1815
10 634
50 52
100 18

F. Comparison of Simulation With the Upper Bound of Uncoded APD-Detected PPM

Most numerical results in this article required determination of the probability of uncoded PPM
symbol-detection error. Two approaches were taken—simulation and bounding. Using the method given
in [7] to simulate the statistical properties of the APD, a channel was simulated for 100,000 256-PPM
symbols. The probability of uncoded symbol error is shown in Fig. 10 and is compared with the upper
bound used in Eq. (5) that was used to derive the remainder of the numerical results in the article. Since
the upper bound is tighter than the union bound, it necessarily converges to the true value. We see this
happening, if slowly, in Fig. 10.

V. Conclusions

This article considered an X2000 second delivery laser and detector, representing the current technology
available. Capacity was reported in terms of BER versus background level, code rate versus background
level, and data rate versus background level. Optimization of the PPM order and APD gain also were
discussed.
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Fig. 10. The probability of uncoded 256-PPM symbol error on an
optical channel.

Results indicate that, for 256-PPM and rate-7/8 coding, RS codes can handle all but the last 3.5 dB
of the background levels that capacity promises can be handled while operating at a BER of 1075.

The optimal value of PPM order depends greatly on the background light. For nighttime reception, the
optimal PPM order was found to be M = 2036, while for daytime reception, M = 18. With mismatched
PPM order, the capacity reduces by more than a factor of two, which suggests that multiple-order PPM
systems should be used if feasible.

Future advances in lasers and detectors have not been considered in this article. Evaluating capacity

for these advancements would provide very useful information regarding the limits at which the optical
channel can operate. This work is straightforward but as of yet undone.
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This article also gives a framework that can be used for evaluating the sensitivity of the capacity to
each parameter. Holding all parameters fixed but one, it is possible to show the sensitivity of capacity
to each parameter. This would provide valuable feedback to laser and detector developers and to system
designers, who then could expend effort in the areas leading to the biggest system gains. For the APD,
this would include a study of the effects of the quantum efficiency, thermal noise levels, dark currents,
and so forth; for the lasers, this would include the repetition rate and the pulse power. Also, note that in
this article we mostly kept 74 fixed at 100 photons per pulse. It is important to know how the capacity
changes for varying ns.

Also unknown is the capacity loss due to the hard PPM symbol demodulator. Removing it and
providing soft slot statistics directly to the decoder would improve capacity, and a study to quantify this
gain would be an important advancement in our understanding of the optical channel.
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Appendix A
Capacity of the Soft-Decision Optical Channel

This article considered the capacity of the “hard-decision” PPM optical channel, in which the decoder
operates on PPM symbol decisions. However, there are practical ways to provide the decoder with
additional information that can improve performance. When additional information is available, the
capacity of the channel will increase (or, at least, will not decrease). Preliminary work on this has been
started.%

There are several forms the additional information could take. It could be a reliability metric associated
with each PPM symbol decision, indicating the conditional probability that the symbol decision is correct
given the values of all the slot statistics. Or, the information could consist of the [ most likely PPM symbols
and each of their reliabilities. Decoders can incorporate the additional information into a decoding
algorithm that performs better as a result. Ultimately, the symbol detector could be removed entirely,
and the decoder could operate on all M soft statistics directly. This approach has been taken [29] and
has shown improvement over Reed—Solomon coding in the cases considered there. This option is often
within practical limits. In situations when full slot statistics are impractical, it still is useful to quantify
the capacity one is giving up by not being able to use such an approach.

The capacity of the communications system when the symbol demodulator (see Fig. 1) is removed is
at least as high as the channel that contains the symbol demodulator. This is a simple consequence of
the data-processing theorem. Using Fig. 1 with the demodulator removed, let X € {0,---, M — 1} denote
the M-PPM symbol sent, and let Y = (y1,---,yanr) be the vector of slot statistics, y; € ®. The capacity
of the modified communications system is

(Y|X :j)
= max Y X =17)lo dY
= me Z/ X'=)log; (zl Tp(xX >p<Y|X:l>>

— [ pY1x = o | ;f‘jf:ﬂ
> p(Y|X = 1)

dY (A-1)

This can be difficult to compute for APD statistics and typical PPM orders such as M = 256.

As a practical matter, codes are not yet available that can take advantage of the additional soft
information within the individual slot statistics. RS codes cannot use soft information, except to the
extent that they can define the erasure probabilities. Recent work on turbo-coded PPM has shown
promise [29], but code rates needed for the optical channel have not been studied yet. Numerical analysis
could indicate whether the difference in capacity is worth the extra effort needed to retain the soft slot
statistics.

6. Dolinar, D. Divsalar, and F. Pollara, “Capacity of PPM on Gaussian and Webb Channels,” JPL Interoffice Memorandum
Draft (internal document), Jet Propulsion Laboratory, Pasadena, California, November 1998.
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Appendix B
Parameters and Notation

The following is a list of parameters and notation used in this article.

Laser and Modulator

M 256, 64, 2 PPM order

Ts 3.125 x 10~8 Width of the PPM slot required by the laser, in seconds

Ty 4.32 x 104 Dead time between PPM symbols required by the laser, in seconds
Qer 106 Modulation extinction ratio

Received Light

Mg 100 Average number of signal photons incident on the photodetector, per pulse

My 0.001-10,000 Average number of background photons incident on the photodetector, per slot

APD Detector and Follow-On Electronics

n 38% Quantum efficiency
kepr 0.007 Tonization ratio
T 300 Noise temperature, in kelvins
G 50-200 Gain
R 179,700 Load resistance implied by transimpedance model, 5.75 x 1012 x T, in ohms
1
B 5T Noise equivalent one-sided bandwidth, in hertz
S
I 4x10~14 Bulk leakage current, in amperes
I 2x 109 Surface leakage current, in amperes
Constants
K 1.38 x 10723 Boltzmann’s constant, in joules/kelvin
e_ 1.6 x 10719 Electron charge, in coulombs

Error probabilities

p Probability of correct uncoded PPM detection
q Probability uncoded PPM symbol i is detected as symbol 7, j # ¢
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